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Exascale platforms offer unprecedented opportunities for a paradigm shift from traditional forward
simulations to design and optimization of complex structures, thereby transforming computational
science into a truly predictive science. A growing class of optimal design and operational problems
involve the combination of complex PDE simulations, uncertainty, and a mixture of discrete (or inte-
ger) and continuous design parameters, giving rise to what we term mixed-integer PDE-constrained
optimization problems (MIPDECOs). This new class of problems requires the integration of three
mature areas of applied mathematics, namely PDE-constrained optimization (PDECO), mixed-
integer optimization, and uncertainty quantification. An integrative approach is key to making
solutions of these classes of problems accessible at the exascale, where algorithms must exploit and
address unprecedented levels of concurrency, architectural hierarchy, and faults.

Optimal Design Applications within DOE. There exists a wealth of optimal design applica-
tions that can be modeled as MIPDECOs within DOE.
• The remediation of contaminated sites, extraction of oil and natural gas, and carbon seques-

tration result in complex optimization problems, where operational cost is minimized subject
to constraints on subsurface flows. Uncertainties arise in modeling the unknown state of the
subsurface, and integer design parameters model the location and operation of wells.
• The strategic goal to transform the nation’s energy systems to 80% clean energy by 2035 cre-

ates many opportunities for optimal design. The design of nano-materials for ultra-efficient so-
lar cells involves the solution of Maxwell’s equation; integer parameters model design choices;
and uncertainties arise due to manufacturing variabilities. The optimal placement and con-
trol of wind farms involves fluid dynamics simulations based on Navier-Stokes equations;
integer parameters model turbine selection/activation and placement; and uncertainties are
environmental or due to material wear and tear.
• The operational planning for nuclear reactors combines complex simulations that combine

neutron transport and fluid flow models with integer decisions on the arrangement of fuel
rods. Uncertainties are associated with imperfect knowledge of the fuel.

Each of these problems is itself a grand-challenge problem with the potential to transform an
application area. By abstracting these applications mathematically as MIPDECOs, we can develop
a new set of algorithmic approaches with the potential to transform applications across DOE.

A New and Challenging Class of Mathematical Problems. Formally, we can define MIPDE-
COs as

minimize
y(γ),u,z

F (y(γ), u, z) subject to g(y, u, z; γ) = 0, ∀γ ∈ Γ, and y ∈ Y, u ∈ U , z ∈ Zp ∩ S,

where y(γ) are the state variables that depend on the random variables γ ∈ Γ, u are the continuous
design variables, z are the integer design variables, and g describes the PDE. This new class
of problems builds on PDECO, uncertainty quantification, and mixed-integer optimization, and
results in a broad set of mathematical and computational challenges.

Hierarchical Mixed-Integer Techniques for MIPDECO. Traditionally, mixed-integer prob-
lems are solved by using a tree search. However, three fundamental mathematical challenges for
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MIPDECO imply that this approach is unlikely to be successful. First, the search tree of even a
simple MIPDECO is huge, involving potentially millions of binary variables. Second, every node
of the tree corresponds to a PDECO, whose computational cost is equivalent to the cost of several
forward PDE solves. Third, the performance of the system is influenced by uncertainty that must
be accounted for in the final design.

To tackle these challenges, we must develop an integrated algorithmic strategy. We must more
efficiently integrate PDECO and PDE solves in the tree search and develop bounds for these inex-
act solves in order to ensure efficient pruning during the tree search. We must explore tree-search
techniques based on surrogate models that can be tuned with just a handful of forward solves and
the corresponding derivatives/adjoints. These surrogates provide a coarse approximation of the
physics useful for searching the tree that can be efficiently propagated up a machine’s hierarchy.
We must develop hierarchical methods that extend recent multilevel techniques for combinatorial
optimization and integrate these with continuous multilevel optimization ideas in order to align al-
gorithmic hierarchies with machine hierarchies. Finally, we must allow the optimization framework
to guide the exploration of the uncertain parameters as the optimal design is approached. Only by
understanding the full breadth of mathematical models that MIPDECO entails can methods fully
exploit an exascale’s machine heterogeneous memory and communication hierarchies.

Integrated Uncertainty Quantification. In applications, uncertainty arises from many sources.
Examples are errors from bulk measurements of material properties (e.g., permittivity, permeabil-
ity), manufacturing inaccuracies, and numerical/modeling errors in terms of coarse discretization,
inaccurate linear or nonlinear solutions, improper boundary conditions, under-resolved material
property variations, or errors from data measurements in the case of inverse problems and model
calibration. A promising approach to tackle these problems is to combine PDECO with stochastic
programming approaches and view uncertainty in the context of a two-phase stochastic mixed-
integer optimization problem. The first phase addresses the design variables, and the second-phase
variables are solutions to the stochastic PDE parameterized by the first-phase variables. An in-
tegrated approach to handling uncertainty offers unprecedented potential for stochastic dimension
reduction, based on combining adjoints with goal-adaptive optimization methods.

Toward Billion-Way Concurrency. An important aspect of our integrative approach is ensur-
ing that the robust integration of the mathematical models and algorithmic tools maps well to
the massive concurrency projected at the exascale. MIPDECO offers three hierarchical levels of
parallelism: the linear solver level, the PDECO level, and the mixed-integer tree-search. At the
highest level we operate a tree search, where every node in the tree represents an optimization
problem, which in turn requires a series of PDE solves. The tree can be searched asynchronously in
parallel, and such approaches have scaled to 1,000 parallel tree-searches. The presence of uncertain
parameters offers another, independent opportunity for parallelization by applying decomposition
schemes that result in loosely coupled forward solves. Finally, the optimization and forward PDE
solves are themselves highly parallelizable. These parallel opportunities are largely independent of
one another, promising multiplicative performance gains suitable for extreme-scale architectures.

Algorithm-Level Resiliency. Resiliency and reduced mean-time-to-failure are growing concerns
for exascale platforms. Where current checkpoint-restart approaches are not practical, our ap-
proach to MIPDECO must provide algorithms that are inherently resilient to hard and soft errors.
Optimization frameworks such as trust-region methods offer a high-level approach to resilience
that can detect applicable errors or failures at negligible computational cost. Similarly, tree-search
strategies offer efficient local checkpointing techniques that can be further enhanced by exploiting
the multilevel hierarchy of the algorithms.
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